This correlates with a higher frequency of dead cells in the aidB

This correlates with a higher frequency of dead cells in the aidB AZD4547 purchase overexpression strain XDB1122 (22.8% in stationary phase, n = 400) compared to the wild-type strain (5.2% dead cells, n = 400) or the wild-type strain with an empty pBBR1 plasmid (6.7% dead cells, n = 400), the backbone of the aidB overexpression plasmid in XDB1122 strain. This observation selleck compound suggests that aidB overexpression is partially lethal in stationary phase. In stationary phase cultures of the

XDB1120 strain, the bacteria display abnormal morphologies at much higher frequency (22%; n = 200) than the wild-type strain (< 1%; n = 200). This phenotype is probably due to the overproduction of AidB-YFP because the aidB overexpression strain (XDB1122) displayed similar morphological defects (61%; n = 200) (Figure 5). Among these abnormal morphologies, bacteria with multipolar shapes were very frequent, swollen cells were often observed, as well as Y-shaped bacteria, elongated cells and minicells. The morphological phenotype of this strain is thus pleiotropic. The analysis of AidB-YFP and PdhS-CFP localization in XDB1120 bacteria with aberrant morphologies, during the exponential growth phase, did not yield a systematic

localization pattern, PI3K inhibitor the AidB-YFP and PdhS-CFP fusions being often diffuse in the bacterium (data not shown). Subcellular localization and overproduction effects of AidB are specific to this acyl-CoA dehydrogenase homolog Since AidB is a member of the 8 ACADs paralogs, we wondered if the particular localization of AidB-YFP and the presence of multipolar forms for the aidB overexpression mutant were specific characteristics of this ACAD homolog. We chose two B. abortus ACAD homologs that are stably produced at a detectable level using Western blot (data not shown). Both paralogs were annotated (BAB2_0433 and BAB2_0216, respectively named AcaD1 and AcaD2) as ACADs and

Resveratrol would be involved in the fatty acid β-oxidation pathway. We observed that both ACADs homologs had a diffuse localization in the cytoplasm when fused to YFP (XDB1123 and XDB1124 strains, data not shown), suggesting that the particular localization of AidB-YFP (at young poles and at the constriction site in dividing cells) is not a common characteristic shared by all ACADs homologs in B. abortus. The phenotype of the strains overproducing one of these two ACADs homologs is similar to the B. abortus pdhS-cfp control strain (Figure 5), with a very low frequency (< 1%) of morphological defects. This suggests that overexpression of any ACAD gene does not produce a morphological defect in B. abortus, further supporting a specific -although probably indirect- role of aidB in events related to morphogenesis.

2 Bardeen J: Surface states and rectification at a metal semi-co

2. Bardeen J: Surface states and rectification at a metal semi-conductor contact. Phys Rev 1947, 71:717.CrossRef 3. Heine V: Theory of surface states. Phys Rev 1965, 138:A1689.CrossRef 4. Datta S: Quantum Transport: Atom to Transistor. Cambridge: Cambridge University Press; 2005.CrossRef 5. Meir Y, Wingreen NS: Landauer formula for the current through an interacting electron region. Phys Rev Lett 1992, 68:2512.CrossRef 6. Chen Z, Appenzeller J, Knoch J, Lin Y-M, Avouris P: The role of metal-nanotube

contact in the performance of carbon nanotube field-effect transistors. Nano Lett 2005, 5:1497.CrossRef 7. Raza H, Kan EC: An extended Hückel theory based atomistic model for graphene nanoelectronics. J Comp Elec 2008, 7:423.CrossRef 8. Ohring M: Reliability and Failure of Electronic Material and Devices. Waltham: Academic; 1998. 9. Neto AHC, Peres NMR, Novoselov KS, Geim AK: The electronic properties of graphene. Rev Mod Phys 2009, 81:109.CrossRef 10. Raza https://www.selleckchem.com/products/lonafarnib-sch66336.html H: Graphene Nanoelectronics: Metrology, Synthesis, Properties Sapitinib ic50 and Applications. Berlin: Springer; 2012.CrossRef 11. MaLevendorf MP, Kim CJ, Brown L, Huang PY, Havener RW, Muller DA, Park J: Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488:627.CrossRef 12. Chen Y, Zhang B, Liu G, Zhuang X, Kang E: Graphene and its derivatives:

switching ON and OFF. Chem Soc Rev 2012, 41:4688. and references thereinCrossRef 13. Umair A, Raza H: Controlled synthesis of bilayer graphene on nickel. Nano Res Lett 2012, 7:437.CrossRef 14. Schettino V, Pagliai M, Ciabini L, Cardini G: The vibrational

spectrum of fullerene C60. J Phys Chem A 2001, 105:11192.CrossRef 15. Kuzmany H, Pfeiffer R, Hulman M, Kramberger C: Raman spectroscopy of fullerenes and fullerene–nanotube composites. Philos. Trans R Soc London Ser A 2004, 362:2375.CrossRef 16. Bunch S, Verbridge SS, Alden SS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL: Impermeable atomic membranes from graphene sheets. Nano Lett 2008, 8:2458.CrossRef 17. Lee C, Wei X, Kysar JW, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321:385.CrossRef 18. Sun YN, Feldman A, Farabaugh EN: X-ray photoelectron spectroscopy of O 1 s and Si 2p lines in films of SiO x formed by electron beam evaporation. Thin Sol Films 1988, aminophylline 157:351.CrossRef 19. Siebeneicher P, Buparlisib Kleemann H, Leo K, Lüssem B: Non-volatile organic memory devices comprising SiO 2 and C 60 showing 10 4 switching cycles. Appl Phys Lett 2012, 100:193301.CrossRef 20. Majumdar HS, Baral JK, Österbacka R, Ikkala O, Stubb H: Fullerene-based bistable devices and associated negative differential resistance effect. Org Electron 2005, 6:188.CrossRef 21. Ji Y, Lee S, Cho B, Song S, Lee T: Flexible organic memory devices with multilayer graphene electrodes. Nano Lett 2011, 5:5995. 22. He J, Chen BO, Flatt AK, Stephenson JJ, Doyle CD, Tour JM: Metal-free silicon–molecule–nanotube testbed and memory device.

Moreover, HABP 30987 showed larger inhibitory effect at the small

Moreover, HABP 30987 showed larger inhibitory effect at the smaller concentration tested in this assay. HABP 30979 inhibited invasion of both cell types by a larger or even higher percentage than the ones shown by the colchicine and Cytochalasin controls. This HABP showed a dose-dependent inhibitory effect on both cells, achieving the highest inhibitory percentage

at 200 μM. The ability of Rv0679c peptides to inhibit M. tuberculosis invasion of target cells suggests that active and specific 17DMAG mw binding to cell surface receptors prevents entry of M. tuberculosis through this invasion pathway. Such notion is further supported by the results of internalization assays carried out with peptide-coated latex beads selleck chemicals llc and epithelial cells, where peptide-coated beads were more actively internalized than uncoated beads. Particularly HABP 30979, which was the strongest invasion

inhibitor, displayed the highest internalization percentages. On the other hand, the large inhibition percentages obtained with phagocytic cells in comparison to the ones obtained with epithelial cells might be explained by the cooperativity phenomenon observed in saturation assays with CB-5083 solubility dmso the phagocytic cell line, since the amount of peptide that binds to surface receptors is proportional to the probability of forming more stable ligand-receptor complexes and thereby of restricting mycobacterial entrance. Furthermore, since some HABPs showed high binding activity to one cell type but low binding activity to the other one, it could be suggested that peptide binding activity depends on specific receptor molecules expressed on each cell type. Consequently, binding of Rv0679c HABPs with high activity to both cell lines could be due to the presence of the same receptor on both cell types or to different receptors Farnesyltransferase with similar characteristics. To date, no structural model has been reported for this protein. Therefore, CD assays were

conducted in order to determine whether there was a relationship between the secondary structure of Rv0679c peptides and their binding ability or in their ability to inhibit mycobacterial invasion. CD spectrum data suggested that the secondary structure of HABP 30979 and 30985 was formed by α-helix and random coil elements, while peptides 30982 to 30984 and HABPs 30986 and 30987 showed undefined structural features. The results indicate that there is not a direct relationship between the structure of HABPs and their ability to binding to target cells. Interestingly, the results obtained in this study showed that the HABPs that inhibited mycobacterial invasion to target cells more efficiently were also the ones that showed the larger internalization percentages, therefore suggesting that Rv0679c HABPs promote entry of pathogenic M. tuberculosis into host cells.

NZ participated in the sequence alignment and drafted the manuscr

NZ participated in the sequence alignment and drafted the manuscript. AA, RRS, SD, YH, MS, MK, and KNK helped in drafting the manuscript. All authors read and approved the final manuscript.”
“Background Magnetic resonance

imaging (MRI) is a powerful imaging tool for clinical diagnosis due to noninvasive tomographic imaging potentials with high spatial resolution [1–5]. In particular, MRI using magnetic nanoparticles (MNPs) conjugated to a targeting moiety is a highly attractive approach for the molecular imaging of cancer-specific biomarkers. This is because the T2-shortening selleck chemicals llc effect of MNPs results in dark contrast [5–13]. Studies aimed at increasing T2 MRI sensitivity report that increasing the magnetization value by size growth and metal doping enhances the T2 shortening effect [8–10]. However, Selleck Romidepsin the size increase induced the superparamagnetic-ferromagnetic transition, so resulting MNPs were no longer suitable as MRI contrast agents. Recent efforts in nanocrystal synthesis have shifted to secondary structure manipulation to upgrade the properties of individual nanocrystals based on interactions between their subunits [14–18]. Magnetic nanoclusters (MNCs) as a secondary structure are composed of assembled MNPs that reportedly can

act as contrast agents to improve T2 MRI capability. Precisely, MNCs showed higher T2 Foretinib datasheet relaxivity and a larger darkening effect than individual MNPs because they possess higher magnetization per particle with superparamagnetic property [19–24]. MNCs have been fabricated either by self-assembly or through direct solution growth. The common goal of these synthetic methods was to control the size of MNCs because T2 relaxivity increases are proportional to particle size [23, 24]. However, the signal enhancement provided by MNCs still remains unsatisfactory because the studies about the density of individual MNPs consisting MNCs have not been concerned yet. Thus, a primary issue in MNC fabrication is to optimally increase magnetic content in concert with particle enlargement to improve T2 relaxivity. Herein, we developed an effective strategy to selectively engineer MNC particle size and

magnetic content, using a double-ligand modulation approach, to enhance T2 MRI signal STK38 intensity. First, high-quality MNPs exhibiting strong nanomagnetism were synthesized by thermal decomposition. High-quality MNPs composed MNCs to derive effective enhancement of MNC T2 relaxivity. Second, a series of MNPs possessing various weight percent of oleic acid (primary ligand) was prepared. This allowed us to control MNP-MNP distances when these particles were combined to create MNC agglomerates, thereby regulating MNC density to our desired specifications. Finally, primary ligand-modulated MNPs were assembled and encapsulated using polysorbate 80 (secondary ligand) by nanoemulsion to construct MNCs. During nanoemulsion, various MNC sizes were fabricated by manipulating the concentration of polysorbate 80 employed.

J Phys Chem C 2012, 116:4267 CrossRef 46 Chen RS, Yang TH, Chen

J Phys Chem C 2012, 116:4267.CrossRef 46. Chen RS, Yang TH, Chen HY, Chen LC, Chen KH, Yang YJ, Su CH, Lin CR: Photoconduction mechanism of oxygen sensitization in InN nanowires. Nanotechnology 2011, 22:425702.CrossRef 47. Huang HM, Chen RS, Chen HY, Liu TW, Kuo CC, Chen CP, Hsu HC, Chen LC, Chen KH, Yang YJ: Photoconductivity in single AlN nanowires by subband gap excitation.

Appl Phys Lett 2010, 96:062104.CrossRef 48. Prades learn more JD, Jimenez-Diaz R, Hernandez-Ramirez F, Fernandez-Romero L, Andreu T, Cirera A, Romano-Rodriguez A, Cornet A, Morante JR, Barth S, Mathur S: Toward a systematic understanding of photodetectors based on individual metal oxide nanowires. J Phys Chem C 2008, 112:14639.CrossRef 49. Chen RS, Wang WC, Lu ML, Chen YF, Lin HC, Chen KH, Chen LC: Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires. Nanoscale 2013, 5:6867.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions RSC designed the experiments, analyzed the data, proposed the model, and drafted the manuscript. WCW and CHC carried out experimental measurements. HPH participated in the result discussion. LCT and YJC carried out material growth. All authors read and approved the final manuscript.”
“Background Nanoparticles exhibit extraordinary electronic,

optical, and mechanical properties compared Metalloexopeptidase to bulk materials. https://www.selleckchem.com/products/jph203.html This is due to two facts: first, nanoparticles have a large surface-to-volume ratio, i.e., a large number of atoms are located on the surface with distinct contribution to the free energy; second, quantum confinement manifests in small scale. For example, the color of nanoparticles can be varied over the whole visible spectrum simply by controlling the size and morphology of silver nanosphere lithography [1] or the size of semiconductor quantum dots such as CdS [2]. Nanosized

TiO2 particles have been applied in various industries ranging from sunscreen cosmetics [3] and whitening paint pigments [4] to catalyst supports [5], dye-sensitized solar cells [6], and self-cleaning surfaces via photocatalytic activity [7]. TiO2 can be found in four different crystalline forms: anatase, rutile, brookite, and akaogiite – a dense, high-pressure phase of TiO2[8–10]. The crystalline structure of TiO2 particles plays a crucial role, for example, in dye-sensitized solar cells, which require anatase phase [11, 12]. We have recently demonstrated controlled wettability from superhydrophobic to highly hydrophilic surfaces on TiO2 nanoparticle-coated paperboard by liquid flame spray (LFS) deposition [13]. It is noteworthy that superhydrophobicity is only observed on paper and paperboard whereas TiO2 nanoparticle deposition by LFS on selleck compound aluminum foil resulted in a slightly hydrophilic surface [14].

Body temperature was measured orally at baseline Patients comple

Body temperature was measured orally at baseline. Patients completed a symptom questionnaire and recorded severity of baseline symptoms on a 100-mm visual analog scale (VAS; 0 [no symptoms] to 100 [severe symptoms]). The symptom questionnaire consisted of three questions (severity of fever, severity of headache, and severity of aches PU-H71 and pains), each rated on a four-point categorical

scale (0 [absent] to three [severe]). Study medication (acetaminophen, fluvastatin, or placebo) was administered 45 ± 15 min before ZOL administration. Rescue medication (unblinded ibuprofen) was dispensed, and patients were instructed to take ibuprofen in addition to study medication if they experienced severe discomfort. During the 3-day treatment period, patients completed the symptom questionnaire four times

daily (morning, midday, evening, and late evening) and then recorded their oral body temperature prior to taking study medication (acetaminophen/matching placebo). The VAS score was recorded once per day in the late evening. At the final visit, patient diaries were collected and patients returned used bottles and unused study and rescue medication. AEs and clinical chemistry variables were evaluated. Patients in the exploratory inflammatory biomarker subgroup had their first blood sample drawn on Day 1 prior to ingesting their blinded study medications. Additional blood samples were collected at 24 ± 2 and 72 ± 2 h after ZOL MM-102 in vitro infusion. FG-4592 mouse Blood samples were Miconazole processed by Quintiles Transnational (Durham, NC), and highly sensitive serum biomarker assays capable of measuring low normal levels were performed by Pacific Biomarkers of Seattle, WA (IL-6 and TNF-alpha: R&D Systems, Minneapolis, MN; interferon [IFN]-gamma: Meso Scale Discovery, Gaithersburg, MD; highly sensitive CRP [hs-CRP]: Roche Diagnostics

North America, Indianapolis, IN). The primary objective of this study was to demonstrate the superiority of acetaminophen vs. placebo in preventing clinically significant increases in body temperature or use of rescue medication during 3 days following ZOL infusion. Secondary objectives included assessment of whether fluvastatin was superior to placebo in preventing clinically significant increases in body temperature measured orally or use of rescue medication. Patients Postmenopausal women aged between 45 and 79 years with a clinical indication for bisphosphonate treatment for osteopenia or osteoporosis and a documented spine or hip bone mineral density dual-energy X-ray absorptiometry T-score of -1.5 or less were eligible for participation in this study. Women who had used IV bisphosphonates or taken oral bisphosphonates for more than 8 weeks or within 6 months of screening were excluded.

Loading peptide onto GO and evaluation of the loading capacity Lo

Loading Olaparib peptide onto GO and evaluation of the loading capacity Loading peptides onto GO was accomplished by sonicating the GO suspension (10 μg/mL) with the peptide solution at an INCB018424 order equal volume ratio for 30 min. The complex was shaken on a shaker at room temperature for 1 h. A light-brown-colored homogeneous suspension was formed and ready for further application. Peptide solution or GO suspension alone was also prepared in a similar way to serve as controls. To determine the loading rate of the peptide onto GO, the mixtures of GO and peptide with different peptide/GO feed ratios (ranging from 0.2 to 12.5) were prepared

and centrifuged at 12,000 rpm for 30 min. The deposits were further washed with water and centrifuged twice. The supernatants were collected, and the amounts of peptides in the supernatants were measured using a standard bicinchoninic acid (BCA) assay. PD-0332991 clinical trial The amount of complexed peptide was calculated after deducting the amount of peptide

in the supernatant. HLA typing Peripheral blood was obtained from healthy human donors. Genomic DNA was extracted and purified from whole blood or T98G cells using a DNA extraction kit (Gene Tech, Shanghai, China) according to the manufacturer’s protocol. DNA typing for HLA-A2 alleles was determined by PCR using sequence-specific primers and sequence-based typing as reported before [27]. The primers (Invitrogen, Life Technologies, Carlsbad, CA, USA) were as follows: Forward primer: 5′-CACTCCTCGTCCCCAGGCTGT-3′ Selleck HA 1077 Reverse primer: 5′-CGTGGCCCCTGGTACCCGT-3′ The thermal profile was 94°C for 10 min, followed by 33 cycles of 94°C for 50 s, 66°C for 50 s, and 72°C for 50 s, and then 72°C for 10 min. DC culturing and antigen pulsing Peripheral blood mononuclear cells (PBMCs) of HLA-A2-positive healthy human donors were isolated by

standard Ficoll gradient centrifugation of heparinized blood, washed with D-Hank’s solution, and divided into two parts. One half of PBMCs were used for DC culture, and the other half were frozen until they were used as effector cell production in later experiments. For DC culturing, PBMCs were suspended in RPMI 1640 with 10% FBS and adhered in culture flasks for 2 to 4 h at 37°C in a 5% CO2 incubator. Non-adherent cells were removed by washing, and the remaining adherent cells were cultured in RPMI 1640 with 10% FBS supplemented with recombinant human GM-CSF (1,000 IU/mL) and IL-4 (20 ng/mL) for 5 to 6 days. Then, immature DCs were harvested and pulsed with GO (0.1 μg/mL), Ag (1, 5, or 10 μg/mL), or GO-Ag complex (GO-Ag; 1, 5, or 10 μg/mL) for 2 h. In the control group, DCs were pulsed with D-Hank’s buffer only. After that, DCs were washed with D-Hank’s buffer and harvested for further studies. Immune response against glioma cells The in vitro evaluation of DC-mediated anti-tumor response was performed as previously described [28].

Importantly, conditioned media from p16-defective cells stimulate

Importantly, conditioned media from p16-defective cells stimulated the invasion and the migration of cultured human epithelial cells. These results clearly show the role of the breast stromal fibroblast p16 protein in suppressing tumoregenesis. Moreover, we have shown that curcumin can normalize p16 expression and therefore reduces the expression and the secretion of these cancer promoting factors. This indicates that curcumin has potential Torin 1 order use as stromal fibroblast normalizing factor

that can be utilized for the inhibition of both cancer initiation and recurrence. Hawsawi, N. M., Ghebeh, H., Hendrayani, S. F., Tulbah, A., Al-Eid, M., Al-Tweigeri, T., Ajarim, D., Alaiya, A., Dermime, S., and Aboussekhra, A. (2008). Cancer Res 68, 2717–2725. O95 Role of Heparanase in Colitis Associated Cancer Immanuel Lerner1, Eyal Zcharia1, Esther Bensoussan1, Dina Rodkin1, Yoav Sherman2, Israel Vlodavsky3, Michael Elkin 1 1 Department

of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel, 2 Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel, 3 Cancer and Vascular Biology Center, The Rappaport 17-AAG Faculty of Medicine, Haifa, Israel Ulcerative colitis (UC) is a chronic inflammatory bowel disease that is closely associated with colon cancer. Here we report that heparanase enzyme acts as an important mediator of colitis-associated tumorigenesis. Heparanase is an only known mammalian enzyme that cleaves heparan sulfate, the major polysaccharide of the extracellular matrix, and plays multiple roles in inflammation

and cancer progression. Applying histological specimens from UC patients and a mouse model of dextran sulfate sodium (DSS)-induced Ergoloid colitis, we found that heparanase is constantly overexpressed and activated during the course of the disease, both in the active and inactive phases of inflammation. Employing heparanase-overexpressing transgenic mice in the model of colitis-associated cancer, induced by carcinogen azoxymethane followed by repeated DSS administration, we demonstrated that heparanase overexpression markedly increased the incidence and severity of colitis-associated colonic tumors, enabling faster tumor take, angiogenic switch and enhanced tumor progression. Notably, Proteases inhibitor DSS-induced colitis alone (without azoxymethane pretreatment) lead to formation of colonic tumors in heparanase-transgenic, but not wild type mice, positioning heparanase as important physiological determinant in inflammation-driven colon carcinoma, replacing the need for carcinogen. Investigating molecular mechanisms underlying heparanase induction in colitis, we found that TNFalfa is responsible for continuous overexpression of heparanase by chronically-inflamed colonic epithelium.

Studies in B

Studies in B. burgdorferi demonstrate that OspA and OspB mediate spirochete association with the tick midgut epithelium shortly after ingestion [3–5], a process that would presumably be facilitated by a chitinase activity. A similar mechanism for vector colonization has been investigated in other organisms that cause vector-borne disease. It has been demonstrated in Leishmania [20] and Plasmodium [21, 22] that chitinases and N-acetylglucosaminidases

play a role #BLZ945 price randurls[1|1|,|CHEM1|]# in weakening the peritrophic membrane, thereby allowing invasion of the midgut epithelium of the sandfly and mosquito, respectively. Inspection of the B. burgdorferi genome reveals both enzymes and transporters that may be involved in chitin degradation. There are two genes predicted to be involved in the cleavage of β-(1,4) glycosidic bonds, a putative

β-N-acetylhexosaminidase (bb0002) and a putative β-glucosidase (bb0620). In addition, previous reports have characterized the chitobiose transport system in B. burgdorferi, which is encoded on circular plasmid 26 (bbb04, bbb05 and bbb06) [14, 15, 17]. It is possible that this transport system plays a role in the utilization of chitin breakdown products (i.e. chitobiose), a mechanism that has been investigated in other chitin-degrading microorganisms [23, 24]. As described above, B. burgdorferi cannot generate GlcNAc de novo and must import this essential sugar from the surrounding environment. Therefore, during in vitro propagation the addition of free GlcNAc is necessary for PF477736 cells to reach optimal cell densities in a single exponential phase. In the absence of free GlcNAc, B. burgdorferi exhibits a unique biphasic growth pattern. In the first exponential phase cells utilize the residual GlcNAc and chitobiose present in complex medium components and grow to

approximately 2.0 × 106 cells ml-1 [14, 17]. Edoxaban Cells then become starved for GlcNAc and exhibit a death phase in which cell numbers decrease to 1.0 × 105 cells ml-1. By 120 hours cells begin to grow in a second exponential phase and reach cell densities greater than 1.0 × 107 cells ml-1. While the source of GlcNAc in the second exponential phase remains unknown, it is possible that sequestered forms of this sugar such as chitin or glycoproteins present in complex medium components play a role. The goals of this study were to determine if B. burgdorferi could utilize chitin as a source of GlcNAc and to identify genes important in the process. Results Chitinase activity in rabbit serum Previous reports have described a chitinase activity in mammalian tissues and serum [25–28]. In order to investigate chitin utilization by B. burgdorferi, we first determined if there was an inherent chitinase activity in the growth medium (BSK-II) that would interfere with subsequent growth analyses of B. burgdorferi in the presence of chitin.

Heat Transfer Engineering 2009, 30:1108–1120 CrossRef 17 Sefiane

Heat Transfer Engineering 2009, 30:1108–1120.CrossRef 17. Sefiane K, Bennacer R: Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates. Adv Colloid Interface Sci 2009, 147–148:263–271.CrossRef 18. Sefiane K, Skilling J, MacGillivray J: Contact line motion and

dynamic wetting of nanofluid solutions. Adv Colloid Interface Sci 2008, 138:101–120.CrossRef 19. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H: Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 2007, 50:2272–2281.CrossRef 20. Murshed SMS, Leong KC, Yang C: Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 2005, 44:367–373.CrossRef 21. Vafaei S, Borca-Tasciuc T, Podowski MZ, Purkayastha A, Ramanath G, Ajayan PM: Effect of nanoparticles on sessile mTOR inhibitor droplet contact angle. Nanotechnology 2006, 17:2523.CrossRef 22. Vafaei S, Purkayastha A, Jain A, Ramanath G, Borca-Tasciuc T: The effect of nanoparticles on the liquid–gas surface tension

of Bi 2 Te 3 nanofluids. Nanotechnology 2009, 20:185702.CrossRef 23. Yu W, Xie H, Chen L, Li Y: Investigation of thermal conductivity and viscosity of ACY-1215 cost ethylene glycol based ZnO nanofluid. Thermochim Acta 2009, 491:92–96.CrossRef 24. SAHA HDAC supplier Wong KV, De Leon O: Applications of nanofluids: current and future. Advances in Mechanical Engineering 2010, 2010:519659. 25. Blake TD, PRKACG Haynes JM: Kinetics of liquid/liquid displacement. J Colloid Interface Sci 1969, 30:421–423.CrossRef 26. Blake TD: The physics of moving wetting lines. J Colloid Interface Sci 2006, 299:1–13.CrossRef 27. Voinov OV: Hydrodynamics of wetting. Fluid Dynamics 1976, 11:714–721.CrossRef 28. Cox RG: The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J Fluid Mech 1986, 168:169–194.CrossRef 29. Petrov P, Petrov I: A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 1992, 8:1762–1767.CrossRef

30. De Ruijter MJ, De Coninck J, Oshanin G: Droplet spreading: partial wetting regime revisited. Langmuir 1999, 15:2209–2216.CrossRef 31. Seveno D, Vaillant A, Rioboo R, Adão H, Conti J, De Coninck J: Dynamics of wetting revisited. Langmuir 2009, 25:13034–13044.CrossRef 32. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR: A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics of Fluids A: Fluid Dynamics 1992, 4:30–40.CrossRef 33. Starov VM: Equilibrium and hysteresis contact angles. Adv Colloid Interface Sci 1992, 39:147–173.CrossRef 34. Naicker PK, Cummings PT, Zhang HZ, Banfield JF: Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J Phys Chem B 2005, 109:15243–15249.CrossRef 35. Rhee SK: Surface energies of silicate-glasses calculated from their wettability data. J Mater Sci 1977, 12:823–824.CrossRef 36.