This correlates with a higher frequency of dead cells in the aidB AZD4547 purchase overexpression strain XDB1122 (22.8% in stationary phase, n = 400) compared to the wild-type strain (5.2% dead cells, n = 400) or the wild-type strain with an empty pBBR1 plasmid (6.7% dead cells, n = 400), the backbone of the aidB overexpression plasmid in XDB1122 strain. This observation selleck compound suggests that aidB overexpression is partially lethal in stationary phase. In stationary phase cultures of the
XDB1120 strain, the bacteria display abnormal morphologies at much higher frequency (22%; n = 200) than the wild-type strain (< 1%; n = 200). This phenotype is probably due to the overproduction of AidB-YFP because the aidB overexpression strain (XDB1122) displayed similar morphological defects (61%; n = 200) (Figure 5). Among these abnormal morphologies, bacteria with multipolar shapes were very frequent, swollen cells were often observed, as well as Y-shaped bacteria, elongated cells and minicells. The morphological phenotype of this strain is thus pleiotropic. The analysis of AidB-YFP and PdhS-CFP localization in XDB1120 bacteria with aberrant morphologies, during the exponential growth phase, did not yield a systematic
localization pattern, PI3K inhibitor the AidB-YFP and PdhS-CFP fusions being often diffuse in the bacterium (data not shown). Subcellular localization and overproduction effects of AidB are specific to this acyl-CoA dehydrogenase homolog Since AidB is a member of the 8 ACADs paralogs, we wondered if the particular localization of AidB-YFP and the presence of multipolar forms for the aidB overexpression mutant were specific characteristics of this ACAD homolog. We chose two B. abortus ACAD homologs that are stably produced at a detectable level using Western blot (data not shown). Both paralogs were annotated (BAB2_0433 and BAB2_0216, respectively named AcaD1 and AcaD2) as ACADs and
Resveratrol would be involved in the fatty acid β-oxidation pathway. We observed that both ACADs homologs had a diffuse localization in the cytoplasm when fused to YFP (XDB1123 and XDB1124 strains, data not shown), suggesting that the particular localization of AidB-YFP (at young poles and at the constriction site in dividing cells) is not a common characteristic shared by all ACADs homologs in B. abortus. The phenotype of the strains overproducing one of these two ACADs homologs is similar to the B. abortus pdhS-cfp control strain (Figure 5), with a very low frequency (< 1%) of morphological defects. This suggests that overexpression of any ACAD gene does not produce a morphological defect in B. abortus, further supporting a specific -although probably indirect- role of aidB in events related to morphogenesis.