In LBM, it is intended to model fluids as a collection of particl

In LBM, it is intended to model fluids as a collection of particles, which successively undergo collision and propagation over a discrete lattice mesh. Several lattice Boltzmann models have been proposed for the incompressible Navier–Stokes equations. A collision model was proposed by Bhatnagar et al. [13] to simplify the analysis of

the lattice Boltzmann equation, which leads to the so-called lattice BGK model. Remarkable efforts have been conducted by many researchers that made this numerical method more attractive for fluid dynamics modeling, e.g., [14, 15]. For more details about Fulvestrant purchase LBM and its application, kindly refer to the aforementioned publications. Most of the researches cited above considered the heat transfer enhancement by adding either the fin or using nanofluids. The main objective of this study is to examine both of these effects on the heat transfer performance. In general, previous works were performed to investigate different cases of nanofluid flow and

heat transfer in channels with mounted objects by focusing on changing geometries, arrangement, and dimensions of the objects. However, more efforts are needed in order to optimize the controlling parameters for best heat transfer enhancement. Methods Problem definition The geometry of the problem mTOR inhibitor is shown in Figure 1. A cold mixture of base fluid (water) and the nanoparticles (alumina) is forced to flow into a channel that is heated from its bottom and kept at a constant high temperature, while the top wall is insulated. The channel aspect ratio is fixed at L/H = 15. The Prandtl number

is taken as 7.02, and the Reynolds numbers are 10, 50, and 100, whereas the extended surfaces’ height to space ratio l/S is 0.2, and the ratio between the objects’ height to the channel’s height l/H is 0.2. Figure 1 A schematic plot of flow in a channel. The flow is assumed as Newtonian, laminar, two-dimensional, and incompressible. In addition, it is assumed that the cold mixture of base fluid (water) and the solid spherical nanoparticles (alumina) is in thermal equilibrium, and it flows at the same velocity as a homogenous mixture. Numerical simulation The D2Q9 LBM model is used to simulate fluid flow in two-dimensional channel with uniform grid size of δx × δy. The lattice Boltzmann Methamphetamine equation (known as LBGK equation) with single relaxation time can be expressed as [13] (1) which can be reformulated as (2) where and τ f as the single relaxation time of the fluid, f i represents the particle distribution function, e i is the particle streaming velocity, and is the local equilibrium distribution function. For D2Q9 model is given by [8] (3) where ρ is the density of the fluid and ω i is the weight function, which has the values of , for i = 1 to 4, and for i = 5 to 8. The macroscopic fluid flow velocity in lattice units is represented by u.

Tohoku J Exp Med 2007,211(1):75–79 PubMedCrossRef 9 He F, Soejoe

Tohoku J Exp Med 2007,211(1):75–79.PubMedCrossRef 9. He F, Soejoedono RD, Murtini S, Goutama M, Kwang J: Complementary monoclonal antibody-based dot ELISA for universal detection of H5 avian influenza virus. BMC Microbiol 2010, 10:330.PubMedCrossRef 10. Cui S, Tong G: A chromatographic strip test for rapid detection of one lineage of the H5 subtype of highly pathogenic Proteasome inhibitor avian influenza. J Vet Diagn Invest 2008,20(5):567–571.PubMedCrossRef 11. Julkunen I, Pyhala R, Hovi T: Enzyme immunoassay, complement fixation and hemagglutination inhibition tests in the diagnosis of influenza A and B virus infections. Purified hemagglutinin

in subtype-specific diagnosis. J Virol Methods 1985,10(1):75–84.PubMedCrossRef 12. Prabakaran M, Ho HT, Prabhu N, Velumani S, Szyporta M, He F, Chan KP, Chen LM, Matsuoka Y, Donis RO, et al.: Development of epitope-blocking ELISA for universal detection of antibodies to human H5N1 influenza viruses. PLoS One 2009,4(2):e4566.PubMedCrossRef

13. He F, Kiener TK, Lim XF, Tan Y, Raj KV, Tang M, Chow VT, Chen Q, Kwang J: Development of a GSK458 order sensitive and specific epitope-blocking ELISA for universal detection of antibodies to human enterovirus 71 strains. PLoS One 2013,8(1):e55517.PubMedCrossRef 14. Ho HT, Qian HL, He F, Meng T, Szyporta M, Prabhu N, Prabakaran M, Chan KP, Kwang J: Rapid detection of H5N1 subtype influenza viruses by antigen capture enzyme-linked immunosorbent assay using H5- and N1-specific monoclonal antibodies. Clin Vaccine Immunol 2009,16(5):726–732.PubMedCrossRef 15. He F, Du Q, Ho Y, Kwang J: Immunohistochemical detection of Influenza virus infection in formalin-fixed tissues with anti-H5 monoclonal

antibody recognizing FFWTILKP. J Virol Methods 2009,155(1):25–33.PubMedCrossRef 16. Prabhu N, Prabakaran M, Hongliang Q, He F, Ho HT, Qiang J, Goutama M, Lim AP, Hanson BJ, Kwang J: Prophylactic and therapeutic efficacy of a chimeric monoclonal antibody specific for H5 haemagglutinin against lethal H5N1 influenza. Antivir Ther 2009,14(7):911–921.PubMedCrossRef Astemizole 17. He F, Kwang J: Monoclonal antibody targeting neutralizing epitope on h5n1 influenza virus of clade 1 and 0 for specific h5 quantification. Influenza Res Treat 2013, 2013:360675.PubMed 18. Prabakaran M, He F, Meng T, Madhan S, Yunrui T, Jia Q, Kwang J: Neutralizing epitopes of influenza virus hemagglutinin: target for the development of a universal vaccine against H5N1 lineages. J Virol 2010,84(22):11822–11830.PubMedCrossRef 19. Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K: Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virol 1991,182(2):475–485.CrossRef 20.