Transgenic females proved to be reproductively competent as defined by fecundity, appropriate cyclic changes in vaginal cytology in intact adult females, and spontaneous LH surges as well as surges in response to steroid or mating stimuli. The expression of c-fos following such steroid treatment and mating in ovariectomized transgenics was similar to the
expression previously reported in nontransgenic mice. Likewise, the percentage of retrogradely labeled GnRH neurons was similar to that reported in nontransgenic mice. However, episodic LH secretion, an index of GnRH pulse generator activity, was dramatically compromised in ovariectomized female transgenics compared with C57BL6 controls of both sexes and castrated transgenic males. Taken together, these findings suggest that the GnRH pulse generator
is selectively impaired in ovariectomized females in which selleck GnRH neurons express GFP.”
“CD81 is a major receptor for Hepatitis C Virus (HCV). It belongs to the tetraspanin family whose members form dynamic clusters with numerous partner proteins and with one another, forming tetraspanin-enriched areas in Tariquidar mouse the plasma membrane. In our study, we combined single-molecule microscopy and biochemistry experiments to investigate the clustering and membrane behaviour of CD81 in the context of cells expressing EWI-2wint, a natural inhibitor of HCV entry. Interestingly, we found that EWI-2wint reduces the global diffusion of Selleck Dibutyryl-cAMP CD81 molecules due to a decrease of the diffusion rate of mobile CD81molecules and an increase in the proportion of confined molecules. Indeed, we demonstrated that EWI-2wint promotes CD81 clustering and confinement in CD81-enriched areas. In addition, we showed that EWI-2wint influences the colocalization of CD81 with Claudin-1 – a co-receptor required for HCV entry. Together, our results indicate that a change in membrane partitioning of CD81 occurs in the presence of EWI-2wint. This study gives new insights on the mechanism by
which HCV enters into its target cells, namely by exploiting the dynamic properties of CD81.”
“The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces the rare amino acid 3-methylarginine (MeArg), which is highly active against the closely related soybean pathogen Pseudomonas syringae pv. glycinea. Since these pathogens compete for the same habitat, Pss22d is a promising candidate for biocontrol of P. syringae pv. glycinea. The MeArg biosynthesis gene cluster codes for the S-adenosylmethionine (SAM)dependent methyltransferase MrsA, the putative aminotransferase MrsB, and the amino acid exporter MrsC. Transfer of the whole gene cluster into Escherichia coli resulted in heterologous production of MeArg. The methyltransferase MrsA was overexpressed in E. coli as a His-tagged protein and functionally characterized (K(m), 7 mM; k(cat), 85 min(-1)).