None of the qnr positive

None of the qnr positive PND-1186 datasheet isolates carried bla SHV. Figure 1 PFGE profiles of E. coli O25b-B2-ST131isolates collected in this study harbouring qnr genes. The degree of similarity is shown on the scale at the top left of the figure. Isolate no. Specimen Age Gender. No mutations were detected in the quinolone-resistance-determining regions of gyrA. However, there

was a new mutation in isolate D-140 topoisomerase subunit IV at position 520 G to C that altered 174 Val (GTC) to Leu (CTC) possibly not leading to any additional chromosome encoded fluoroquinolone resistance. We also observed mutations in isolate Y-190 in topoisomerase subunit IV; the amino acid 560A → V and at position 840 V → A. PFGE PFGE showed diverse genetic profiles (Figure 2). The isolates that harboured qnr genes; although resemble similar phenotypes; some displayed unrelated PFGE profiles suggesting that they were not epidemic cases (Figure 1). The genotyping results of the 5 isolates that contained class II integrons suggested that only two of these isolates have identical PF patterns and harboured similar antibiotic resistant profiles whereas the other three isolates were not closely related and contained different resistance genes including

one isolate which contained the AmpC gene bla CMY-2. All 5 harboured bla CTX-M-15 (Figure 3). Figure 2 Relationship between banding Sotrastaurin molecular weight patterns after digestion with Xba I Napabucasin endonuclease enzyme showing the percentage similarity between group types and clusters for 83 E. coli O25b-B2-ST131 isolates using DICE/UPGMA with an optimization of 1.0% and a tolerance of 0.5% generated by BioNumerics software (v.7.1). Figure 3 PFGE profiles of E. coli O25b-B2-ST131isolates containing Class II integron. Antimicrobial why susceptibility We identified 3 (3.6%) of the E. coli O131 isolates did not contain β-lactam resistance genes

which reflect the infection caused by cephalosporin-susceptible clones (KOC-3, KOC-47 and Y-136). These isolates were collected from two different hospitals, all from urine specimens and were not related by PFGE to each other but were closely related to other isolates that contained bla CTX-M-15 (Figure 2). Plasmid analysis IncFII plasmid that also contains β-lactamase gene bla OXA-1 that encodes for OXA-1 and the aminoglycoside/fluoroquinolone acetyl transferase aac(6’)-Ib-cr was present in 58 (70%) of isolates of which 33 (40%) contained both genes. The isolate (KOC10) harbouring bla CTX-M-56 gene also contained qnrB1 and bla CMY-2 genes and carried IncF1 plasmids of about 97 kb and 160 kb (Figure 4). Number of transconjugants in 1 ml for KOC10 was on average 40 to 6 × 102 which comprised of 4 × 10−8 to 6 × 10−7 transconjugants per donor cell. PCR revealed that only one of the transconjugates contained qnrB1 and bla CMY-2 genes and one contained qnrB1 and bla CTX-M-56. Figure 4 Agarose gel showing S1 nuclease PFGE-based sizing of large plasmids from E.

Comments are closed.