And the ratio I G/I 2D shows that the number of graphene layers c

And the ratio I G/I 2D shows that the number of graphene Screening Library supplier layers cannot be controlled by implantation dosage purely but are associated with carbon atoms precipitation and segregation from inside to the surface grain boundaries of the substrate during

thermal treatment. From ultra-thin carbon film to graphene by means of the similar cluster ion implantation technique, it is conductive for cluster implantation of light elements to develop low-energy shallow ion implantation in semiconductor industry. Acknowledgements STA-9090 order This work was supported by the National Natural Science Foundation of China under grant 11350110206 and the Fundamental Research Funds for the Central Universities under the contract (No. 201120202020005). And we sincerely appreciated for help from Professor Liu ([email protected]) who proposed some constructive suggestions for experimental design. References 1. Mayer M: Ion beam analysis of rough thin films. Nucl Instrum Methods B 2002, 194:177.CrossRef 2. Barradas NP, Parascandola S, Sealy BJ, Grotzschel R, Kreissig U: Simultaneous and consistent analysis of NRA RBS and ERDA data with IBA Data Furnace. Nucl Instrum Methods B 2000, 161–163:308.CrossRef

3. Jeynes C, Barradas NP, Marriott PK, Boudreault G, Jenkin M, Wendler E, Webb RP: Elemental thin film depth profiles by ion beam analysis using simulated annealing-a new tool. J Phys D ApplPhys 2003, 36:97.CrossRef 4. Wang Y, Nastasi M: Handbook of modern ion beam materials analysis. 2nd edition. England: Cambridge University Press; 2010. 5. Barradas NP, Almeida SA, Jeynes AC, Knights AP, Silva $RP, Sealy BJ: RBS and ERDA simulated annealing selleck study of ion beam synthesized gallium nitride. Nucl Instrum Methods B 1999, 48:463.CrossRef 6. Chu WK, Li YP, Liu JR, Wu JZ, Tidrow SC, Toyoda N, Matsuo J, Yamada I: Smoothing of YB 2 Cu 3 O 7-δ films by ion cluster bombardment. Appl Phys Lett 1998, 72:246.CrossRef 7. Song B, Guo LP, Li M, Liu CS, Ye MS, Fu DJ, Fan XJ: Accelerator-electron microscope interface system at Wuhan University. Nucl Techni 2007,30(9):777. Ribose-5-phosphate isomerase 8. Guo

LP, Li M, Liu CS, Song B, Fu DJ, Fan XJ: In situ TEM-tandem/implanter interface facility in Wuhan University for investigation of radiation effects. Guilin, China: ; 2007. [9thChina-Japan Symposium on Materials for Advanced Energy Systems and Fission & Fusion Engineering jointed with CAS-JSPS Core-university Program Seminar on Fusion Materials, System and Design Integration] 9. Mukouda I, Shimomura Y, Yamaki D, Nakazawa T, Aruga T, Jitsukawa S: Microstructure in pure copper irradiated by simultaneous multi-ion beam of hydrogen, helium and self ions. J Nucl Mater 2000, 283–287:302.CrossRef 10. Appleton BR, Tongay S, Lemaitre M, Gial B, Fridmann J, Mazarov P, Sanabia JE, Bauerdick S, Bruchhaus L, Minura R, Jede R: Materials modifications using multi-ion processing and lithography system.

Comments are closed.