Bone turnover PF-01367338 clinical trial markers increase in women after the menopause. In one study, b-ALP, assayed using the same method as in the present study,
was significantly higher in post-menopausal (13.7 μg/L) than pre-menopausal women (10.8 μg/L, p < 0.0001) [26]. Other studies have found even lower values in healthy pre-menopausal women, of 8.2 μg/L [27] and 8.8 μg/L [28]. Reported mean values for post-menopausal women with osteoporosis range from approximately 12.5 μg/L [13] to 16.7 μg/L [27] and 18.1 μg/L [29]. The boundaries of the middle tertile for b-ALP in our sample were >10.0 and ≤13.3 μg/L and were slightly lower than the corresponding boundaries for osteoporotic subjects in the fracture intervention trial (FIT, 11.7 and 14.9 μg/L) [12]. Regarding sCTX,
levels in healthy ARS-1620 datasheet pre-menopausal women have been measured at 1,748 pmol/L (corresponding to 0.225 ng/mL) compared with 2,952 pmol/L (corresponding to 0.380 ng/mL) in post-menopausal women [30]. Similarly, Garnero et al. [5] obtained levels of 0.299 and 0.556 ng/mL in pre- and post-menopausal women. The boundaries of the middle tertile for sCTX in our sample of post-menopausal Lazertinib supplier osteoporotic women was >0.423 to ≤0.626 ng/mL (or 3,283 to ≤4,861 pmol/L), slightly higher than in the FIT study (2,337 to 3,665 pmol/L) [12]. Thus, the baseline levels of bone turnover markers in the present analysis are consistent with those in previous studies in post-menopausal women. At baseline, higher tertiles of b-ALP and sCTX were associated with lower BMD, both at the lumbar spine and the femoral neck. Previous studies have reported that high bone turnover is correlated with low BMD [25, 31] and predicts higher rates of future bone loss in post-menopausal women [32, 33]. High bone turnover has also been associated with increased fracture risk, even after adjustment for BMD [31, Ureohydrolase 34, 35]. In our analysis, rates of prevalent vertebral and peripheral osteoporotic fractures at baseline did not differ between tertiles of bone turnover markers. However, the incidence of vertebral fractures during the study
in the placebo group increased across ascending tertiles of both bone markers by 24% or more depending on the marker considered, with significant differences when comparing the lowest and highest tertiles (b-ALP or CTX independently or both b-ALP and CTX), suggesting that high bone turnover is a risk factor for fracture. Strontium ranelate produced substantial increases in lumbar BMD independently of the baseline level of b-ALP or sCTX. Larger effects of treatment on BMD in women with higher baseline bone turnover level have been reported for many anti-osteoporotic drugs, including anti-resorptive agents such as calcitonin [6], hormone replacement therapy [7] and bisphosphonates [8–10] and the bone formation agent, teriparatide [13].