capsulatus flagellar motility [6–8], and this role is widely conserved find more in the class α-proteobacteria [6, 9–13]. Of all RcGTA regulators identified to date, only loss of CtrA leads to a complete loss of the ability to make RcGTA particles, which is caused by the loss of transcription of
most genes in the RcGTA gene cluster [5, 8]. However, there is no evidence that CtrA acts via direct regulation at the RcGTA promoter to control transcription of these genes and the mechanistic link between CtrA and RcGTA gene expression remains unknown. Transcriptome analyses identified a number of predicted transcriptional regulator and signal transduction proteins whose genes had lower transcript levels in a ctrA mutant [8]. These included two genes encoding putative anti-σ and
anti-anti-σ proteins, annotated as rsbW and rsbV, respectively [14]. These are homologues of the anti-σ and anti-anti-σ factors that control the activity of the general stress response factor, σB, in the gram-positive bacterium Bacillus subtilis[15]. In B. subtilis, the σB-encoding sigB gene is located in an 8-gene operon (rsbR, S, T, U, V, W, sigB and rsbX; Figure 1) and the Rsb (regulators of sigma Trichostatin A clinical trial B) proteins encoded in this operon control the availability of σB to associate with RNAP core enzyme [16, 17]. Under non-stressed conditions, the anti-σ factor RsbW binds and sequesters σB[18]. The anti-anti-σ factor, RsbV, is an interacting antagonist of RsbW [19]. RsbW is a kinase of RsbV, where phosphorylation during exponential growth inactivates the RsbV antagonist and allows RsbW to bind σB[19]. In response to stress, such as a drop in cellular ATP levels, additional Rsb proteins can affect the phosphorylation state of RsbV [20, 21]. The phosphatase RsbU stimulates the release of σB by dephosphorylating RsbV
[22], which in turn inhibits RsbW from sequestering σB. This “partner-switching” [20] regulatory mechanism has been found in diverse species, with numerous examples related to regulating σ factor activity [23]. The activity of RsbU is itself controlled by RsbR, RsbS and RsbT, which form a Inositol oxygenase supramolecular complex called the stressosome [24]. The stressosome acts to integrate a diverse array of signals to activate the σB stress response [24] and control the activity of the downstream regulatory PS-341 in vitro module involving RsbU-RsbV-RsbW [15]. This Rsb-σB module is conserved in other Bacillus species, such as B. licheniformis and B. halodurans, whereas some other species, such as B. cereus, show variations in the regulatory components [25]. In B. cereus, the RsbV-RsbW-σB module is conserved but the phosphatase of RsbV ~ P is RsbY, which possesses a structurally different N-terminal sensing domain from RsbU, and there is a hybrid histidine kinase/response regulator protein, RsbK, which senses and integrates multiple signals [25] and that can activate RsbY [26]. Figure 1 Genomic arrangements of rsb genes and homologues in other species. In R.