7% of the cells remaining Foxp3+, respectively, in the representative data shown in Fig. 5B. These data suggest 1α25VitD3 contributes to the retention of Foxp3+ expression by human CD4+CD25high T cells. To confirm and extend these data, these experiments were repeated with mouse T cells. When total unfractionated CD4+ cells (>99% pure) were cultured in the absence or presence of 1α25VitD3, Foxp3 expression was increased from 3% to 7.3% with 10−7 M 1α25VitD3 in the example shown (Supporting Information Fig. 2A). When purified CD4+Foxp3GFP+ cells (>97% Foxp3+) were
stimulated with anti-CD3 and IL-2, in the absence of 1α25VitD3, Foxp3 expression was greatly reduced following 7 days of culture. In contrast, in Selleck Pifithrin �� cultures containing
10−7 M and 10−6 M 1α25VitD3, more than 50% of the cells remained Foxp3+ (Supporting Information Fig. 2B). The addition of RA plus TGF-β to all cell cultures enhanced Foxp3 expression as TSA HDAC clinical trial predicted from independent published data. Collectively, these data support the evidence from experiments with human T cells that 1α25VitD3 enhances the frequency of Foxp3+ cells by maintaining Foxp3 expression in culture. An enrichment in the percentage of Foxp3+ cells was observed in the presence of 10−6 M 1α25VitD3, or in the presence of lower concentrations of 1α25VitD3 plus anti IL-10R antibody. As 1α25VitD3 has well-documented inhibitory effects on T-cell cycle and proliferation, we investigated the capacity of 1α25VitD3 to directly modify the proliferation of Foxp3+ versus Foxp3− T cells using CellTrace Violet. This highly stable dye enabled monitoring of cell division of Foxp3+ and Foxp3− Sirolimus in vivo cells for up to 14 days of culture by flow cytometry. In the absence of 1α25VitD3, comparable proportions of the major Foxp3− and the minor Foxp3+ T-cell populations had proliferated by day 7 and day 14 of culture. The addition of 1α25VitD3 10−6 M to the culture, impaired both FoxP3− and Foxp3+ T-cell
proliferation at days 7 and 14 (Fig. 6A). However, whereas the Foxp3− T-cell proliferative response was almost completely abrogated, a clear Foxp3+ T-cell response, albeit reduced, could still be observed. The difference in the proliferative response between these two populations was significant (Fig. 6B). The addition of anti-IL-10R into cultures containing 10−7 M 1α25VitD3 resulted in a significant increase in cell division in the Foxp3+, but not the Foxp3− T cells at day 7 (Supporting Information Fig. 3) and to a lesser extent at day 14 (data not shown). Together these data suggest that a contributory mechanism by which 1α25VitD3 increases the frequency of Foxp3+ cells is via the preferential inhibition of the proliferation of Foxp3− cells.